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1. INTRODUCTION.

1.1 The regression model in goodness-of-fit.

Suppose a random sample X , X2 ,... Xn comes from distribution

FO (x) and let X(1 ) ,X(2 ) ,...,X be the order statistics. F (x) may

be of the form F(w) with w = (x-c)/ ; a is then the location parameter

and is the scale parameter of F x) . There may be other parameters

in F(w), for example, a shape parameter; here we assume such parameters

known, but a and are unknown. We %an suppose the random sample of

X-values to have been constructed from a random sample wl,w 2 1 ... ,wn  from

F(w), by the transformation

X. =a + Bw. (1)

If the order statistics of the w-.sample are w(l ) < w(2) < .. < w(n)

we have also

X(i) = Ot + w(i) (2)

Let E(wi) be m. and let v., be E(w -m)(w -im.);
M1 1 (i) i (j)

let V be the n x n matrix with entries v., V is the covariance
13

matrix of the order statistics w(i). From (2) we have

E(X Mi) = a + fm. (3)

and a plot of X against m. should be approximately a straight line

with intercept a on the vertical axis and slope 3 The values m. are

the wost natural values to plot along the horizontal axis to achieve a

straight line plot, but for most distributions they are difficult to calculate.
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Various authors have therefore proposed alternatives T. which are con-1

venient functions of i ; then (2) can be replaced by the model

Xi' = cX + T. + E. (4)

where E. is an "error"which has mean zero only for T. = m.1 1 1

A common choice for T. is H. -- F {i/(n+l)} or si-ilar1

expressions which approximate m. . A test of1

H0: the X-sample comes from F (x), (5)

can then be based on how well the data fits the line (3) or (4).

1.2 Example. As an example, suppose it is desired to test that the

2
X-sample is normally distributed, with unknown mean P and variance 0

w

Then F(w) = t /2 dt , and the w-sample is standard normal.

Then (1) becomes

X. = +Ow.
1 1

and (3) is

E(Xi) = M + Om.

where m. are the expected values of standard normal order statistics.
i

For this distribution, a = p and = 0
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1.3 Measures of fit.

The practice of plotting the X M against m. (or against

another set of constants T. which approximate the m.-values)1 1

and looking to see if a straight line results, is time-honored as a

quick technique for testing normality. An improvement on this procedure

by eye, is to measure how well the data fits the line (3). Three main

approaches to measuring the fit can be identified. The first is simply

to measure the correlation coefficient R(X,T) between the paired sets

X. and T . A second method is to estimate the line a + Ti , using1 11

generalized least squares to take into account the covariance of the order

statistics, and then to base the test of fit on the sum of squares of

residuals. Finally, a third technique is to estimate from (2) using

generalized least squares, and to compare this estimate with the estimate

of scale given by the sample standard deviation. In this article we

explore the first two of these methods, which are often closely connected.

1.4 The correlation coefficient.

The simplest of the three methods above is to use the correlation

co-efficient R(X,T). Here we extend the usual meaning of correlation,

and also that of variance and covariance, to apply to constants as well as

random variables. Thus let X refer to the vector X (1), X (n), and T

E~li)  T.

to vector TI,...,T ; let E M and E 1 , (all sums are for
ne t n

1 = 1 to n) and define the sums
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S(X,T) = E(X M - X)(T. - T) = X Ti - nXT

-)2 -(X )2s(x,x) = - X(=x(.i) X

S(T,T) = E(T. - T)2
1

2
S(X,X) will often be called S

The variance of X is then V(X,X) = S(X,X), the variance oL

T is V(T,T) = n- S(T,T), and the covariance of X and T is

V(X,T) = S(X,T). The correlation coefficient between X and T is
n-l

R(XT) V(XT) S(X,T).
{V(X,X)V(T,T)} {S(X,X)S(T,T)}'

2

Statistics R(X,m) (called sometimes R) or R (X,m) are attractive statistics for

testing the fit of X to the model (2), since if a "perfect" sample is

given, that is, a sample whose ordered values fall exactly at their

expected values, R(X,m) will be 1 , and the value of R(X,m) can be

interpreted as a measure of how closely the sample resembles a perfect

sample. Then tests based on R(X,m), or equivalently on R 2(X,m) will

be one-tailed; rejection of H occurs only for low values of R0

Suppose X(i) = a + Ti, where a and are the usual regression

estimators of a and B (ignoring the covariance between the X ).

It is possible to set up the standard ANOVA table for straight line

regression:
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$2 (X,T)

Regression SS - (TT)
S(T,T)

2 S$2 (X,T) 7 X -X 2

Error SS S S(T,T) (i) (i)

2
Total SS S = S(XX)

and it is clear that

Error SS 2
Total 1 SS R (XT).

Define, for any T vector,

Z(X,T) = n{l - R 2(X,T)}.

Then Z(X,T) is a test statistic equivalent to R 2(X,T), based on the sum

of squares of the residuals after the line (3) has been fitted. Z(X,T)

has, in common with many other goodness-of-fit statistics e.g., chi-square,

and EDF statistics, the property that the larger Z(X,T) is, the worse the

fit. Sarkadi [1975] and more recently Gerlach [1979]have shown consistency

for correlation tests based on R(.X,m), or equivalently Z(X,m), for a wide

class of distributions including all the usual continuous distributions.

This is to be expected, since for large n we expect a sample to become

perfect in the sense above. We can expect the consistency property to

exLend to R(X,T) provided T approaches m sufficiently rapidly for

large samples.

2
1.5 Censored data. R (X,T) can easil be calculated for censored

data, provided the ranks of the available X(i ) are known. These(ii)
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are paired with the appropriate T. and R 2(X,T) is calculated using the
I

same formula as above, wifh the sums running over the known i

For example if the data were right censored, so that only the r

smallest values X W were available, the sums would run for i from

1 to r; if the data were left-censored, with the first s values missing,

the i would run from s+l to n . Tables of Z(X,T) for T = m or

H , for testing for the uniform, normal, exponential, logistic, or

extreme-value distributions have been published by Stephens (1986).

2. CORRELATION TESTS FOR THE UNIFORM DISTRIBUTION.

For the uniform distribution for X , between limits (a,b),

written U(a,b), we have F(w) = w, 0 < w < 1, and X. = a + (b a)W.1 3.

hence X = a , 3 = b -a. Then mi = E(W(D ) i/(m+l); also H. = m.

The order statistics X(1) could be plotted against i instead of

against i/(n+l); the scale factor 1/(n+l) does not change the correlation

coefficient, and R(X,m) = R(X,H) = R(X,T) where T. ='i
1

In discussing tests for the uniform distribution, we distinguish

four cases:

Case 0; a,b both known;

Case 1; a unknown, but (b-a) known;

Case 2; a known, (b-a) unknown;

Case 3; both a and b unknown.

Case 0. Here a and b are both known, so that Ot and ( are known

in (1). The transformation X' = (X-a)/(b-a) then reduces the problem to
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a test that X' is U(O,1). There are of course many tests for this

special case (see, eg., Stephens, 1986). In the present context, the test

will be based on the residuals from the known line F(x) = x', 0 < x' < 1;

that is, on the statistic Z0 = E{X ) - i/(n+l)}2 It is clear that Z0

has the same asymptotic distribution as the well-known Cramer-von Mises

statistic W = ENX (i ) - (2i - l)/(2n)} 2 + 1/(12n), and, for small samples,

the two statistics will have much the same power properties.

Case 1. Here the model is X(i ) = a + W(i), with = b-a known.
(i) wth ~3= b-aknown

Substitute xi X /; then the model becomes X' = a/ + W M

and E(X' ) = + (m. - m), where c = a/ + m . Ordinary least
(i) i

squares gives a = X. Hence ' = X + m. -0.5 and the test statisticC i) 3 "

2based on residuals is Z ({im. -0.5)} Z has similar

properties to the Watson U2  statistic

U2 = [Xi X - {(2i-l)/(2n) - 0.5}] + 1/(12n), and has the same

asymptotic distribution.

Case 2. For Cases 2 and 3 the situation becomes mjuca hacder, and considerable

analysis is required to obtain the asymptotic distributions of the test

2 -2statistic n_(x - x ) /E(x - X) , the denominators being necessary,saitcn((i) - (i) / CXi)

and complicating the analysis, because for these two cases the scale must be

estimated. We state the results and give proofs later. For Case 2, the

model is E(X i)) = a + 6m., with 6 unknown and a known. Set X Ci) = X(i) - a,

so that E(Xi) = Bmi., and estimate 8 by least squares; then

2 ^ ^
=X in)/Em i  Thus X = a + $m., and the test statistic isCi) i iCi)i

w
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S 2 2
Z2 = nE{X M - X W I /T{X W - X)2  Z2 has the same asymptotic distribution

as Z* = Evi/X. where v. ' for i = 1,2,..., are independent X2
2 11 1

2
variables; X. is an infinite set of positive weights given by ). =.21 1 1

where 0. are the solutions of tan 0. = 0., 0. > 0 (see Section 3 below).1 1 1 1

Case 3. For Case 3, the model is E(Xi) = a + B(m. - 0.5), with a, unknown, and leas

* -2
squares gives u = X and = W- X}m.J]/L(m. - m). The test

statistic is now the correlation coefficient R(X,m) or equivalently Z, Z(X,m);

2 2 2
= n{l - R (X,m)} = nZ[X - X i)  1[Xi - X} where X W = a + (m - 0.5).

Z3 has the same asymptotic distribution as Z3 = "vi/X i, where,

2

as above, vl are independent Xl variables. The constants X. are positive
1 1

weights given in two infinite sets:

Set 1: 4. = 22 , i = 1,2,...

Set 2: = 4k, k = 1,2,..., where are the solutions of tin k =

The derivationof the weights for Cases 2 and 3 will be given in the

next section.

3. ASYMPTOTIC PROPERTIES OF Z(X,m).

3.1. Case 3. It is convenient to give the asymptotic results for Case 3

(the more ditficult case) first. Suppose, without loss of generality,

that the sample comes from U(0,1). However, the model is fitted without
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this knowledge: thus the fitted model is

X"W = a + (i - m) + E. (6)

As stated in Section 2, this leads to the test statistic

^ 2/ 2
Z(X,m) = n{l - R-(X,m) } =(XM - Xi) M {(X.i - ) /n}.

Asymptotically, the denominator tends to 1/12; thus we must study

X - X This may be written'(i) (i)"

- - fA(m. - M) = X - X - ( M - )(m. - M) - (M. - M)1'i) (i

= X(i) - M. - CX - m) - W- ( - )(M- M). (7)

The terms on the right hand side of (7) can be expressed in

terms of the quantile process Q n(t) = X[nt] - m[nt] , 0 -< t -1 1, where

[ntl is the greatest integer in nt. For t given by i/n , we have

X(i) m i n ( t ) ;

1

Vn(X - m) = QSs+ (n
np

0

-n(B 1) = n-(x - x - M. + m)(m. - M)

- 2
(m. - m) /nI

1 1

12 J (t - (){Qnt) - Q(S)dsldt + (n-p

0 0

recalling that n = and '(m, - m) /n - 1/12 It is convenient.1

to define the process Y (t) = Qn(t) - Qn(S)ds. Then insertion

of the above expressions into (7) gives
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1 1

X - X i  =Y(t) -(U - 12(t - ).Y (t).dt du + 0 (n').
n n p

0 0

As n let Q(t), Y(t) be the limiting processes for QnCt) and Y (t)

respectively. 0(t) is the well-known Brownian bridge with mean

E{Q(t)} = 0 and covariance p0 (s,t) = min(s,t) - st. Y(t) then has mean 0

and covariance py(s,t) = min(s,t) - s(l - s) - t(l-t) + 1/12. The

process Y(t) h~s already been studied in connection with the Watson

statistic U2 (Watson, 1961; Stephens, 1976). For the asymptotic

distribution of Z(X,m) we now need the distribution of

1
Z* f W (t) dt, (9)

0

wheie, from (8), we have

1 1

W(t) = Y(t) -(U - ) f 12(t ) Y(t) dt du . (10)

0 0

The covariance function of W(t) requires considerable algebra but

the calculation is straightforward; the result may be expressed as

Pw (s,t) = P0 (s,t) - I(s)'Af(t) (11)

where Ia(s)' is the transpose of iP(s), and is the 2-component vector

-~s ); s(l-s)(2s - 1)}; A is the 2 x 2 matrix with rows (- 1, 1)

and (1,0). The calculation of the distribution of Z* now follows

well-known lines (see, for example, Durbin , 1973, or Stephens, 1976);

Z* has the same distribution as S = E. vi/ i ,. where i runs from1
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2

1 to , v* are indepenuent X1  variables, and where A. are weights,
1 1

found by solving the integral equation

1

A f(s) pw(s,t) ds = f(t) (12)

0

for eigenvalues A. and eigenfunctions f. (t).1 i

The solution of (12) is found as follows. The covariance p (s,t)

can be expressed as p w(s,t) = min(s,t) + g(s,t), with

6 11 2i 3 112Iit 2 3

g(s,t) = -st -1 s + 2s2 
- s _ l t+ 2t 2 - t + - 3st2 + 2st 3  3s2t + 2s3t.5 10 10O 15

Differentiation of (12) twice with respect to t then gives

1 1 1 1

-f(t) + 4ff(s)ds - 6tff(s)ds - 6 fsf(s)ds + 12t fsf(s)ds ~-ft t). (13)

0 0 0 0

Differentiation again gives

1 1

-f' (t) - 6 f(s)ds + 12 sf(s)ds = f (t) (14)

0 0

and finally

-1 ,,~

f(t) = f "(t)

Thus f(t) = A cos VAt + B sin At + Ct + D . (15)

1 1

Suppose f(s) is normalized, so that ( f(s)ds = 1, and let K = f sf(s)ds.
1 0 0

Set e = VA; then f f(s)ds = 1 gives

0

Asin - (cos 0- 1) + i D = l (16)

T e 2
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and

1

K = sf(s)ds = AI1 + BI2 + + (17

0

where

1
f e sin e6+ cosO 1I s Cos Os ds = 2

10

I = s sin Os ds=sico

Substituting f(t) into (13) gives -Ct ' D + 4 6t - 6K + 12Kt 0

for all t ; thus, equating coefficients, we have

-C -6 + 12K =0 and -D + 4 - 6K= 0

C D

Hence 2= , and C + 2D =2.

Thus from (16) we have A sin 6 - B(cos 6 - 1) = 0, and from (17) we have

AI1 + BI 2  0 . Hence 6 must satisfy

sin _ B I 1 - 0 sin -cos 
(cos -1 A 12 sin -6cos ; (18

So 6 satisfies 2 - 6 sin 6 -. 2 cos e = 0 , by cross-multiplication

of (18). Let = 2 ; then 2 - 4 sin cos 4 -. 2[1 - 2 sin 2 0 , and hence

sin 4 = 0 or sin P - cos = 0 Then 4. Vi, i = 1,2,...; or alternatively

2k is the solutiun of tan k= k k = 1,2 ..... Finally, X. = 4i, for the

first A k-set, and A 4 for the second X-set.l-set, an
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3.2 Case 2. For Case 2 the test statistic is

nE(X M _ XM ) 2/E(X - X)2 = Z 2 We can take a = 0 in the model

E(X U) = a + 6m. , so that this becomes E(Xi) = m.i , with

ExMi)m i  ^ (x U) - m i)m.

2 Hence E 2 Similar reasoning to that

1 1

for Case 3 gives the asymptotic distribution of Z2  to be that of

1

12 fW 2 (t)dt where

0
1

W2(t) = Q(t) - 3t f sQ(s)ds. (19)

0

Q(t) is as defined in the previous section, and then W 2 (t) is a Gaussian

process with mean 0; its covariance function (after some algebra) is

3 t3

14 st st (20)
P2 (s,t) = min(s,t) - - st + - + - - .

Thus for the weights in the asymptotic distribution of Z2 , we need
1

eigenvalues of f p 2 (s,t) f(s)ds = f(t) Similar steps to those for

0

Case 3 give f(t) = A cos Ot + B sin Ot + Ct + D with 0 = /X , as before.

Also, f(0) - 0, so D = -A, and

1

-f(t) = 3t1 sf(s)ds = (21)

0

Thus f''(0) 0, so D = A = 0. Then, from (21), we have

1 1

-B sin Ot -Ct + 3t[Bf s sin Os ds + f Cs2 ds] " -B sin Ot

0 0
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1

Hence s sin Os ds = 0; thus 0. is the solution ofJ J

0

sin 0. - 0. cos 0 = 0, that is, tan 0. = 0., j = 1,2.....Finally,
J J 3 3 3

2
A. = 0. .These are the weights given in Section 2.J 3

3.3 Asymptotic percentage points. The next step is to calculate the

percentage points of, say, Z* = Evi/A i where L. are the weights for
3 1i

Case 3. The mean p3 of Z3 is ( P3(s,s)ds = -1/15. The 80 largest A.

* *

were found, and Z 3 was approximated by S1 = S + T , where
31

*a80 80 l * -i)
0E1 vi/ i and T = A3 El S 1 differs from Z3 by E81 A 1(

which is a random variable with mean 0 and variance

11

2E' "2 = 2{ (s,t)ds dt - E1 1 ;
81 ff 3 p1s,

00

this value is found to be negligibly small. Thus critical points of Z* are

)

found by finding those of S* , using Imhof's (1961) method for a finite sum

2
of weighted X variables, and then adding T

3.4 Tables. Tables 1 and 2 give percentage points for Z2  and Z3

respectively. Those for n finite have been obtained by Monte Carlo

sampling. The last line in each table contains the asymptotic points.

Table 1 also gives points for a modification of Z2 , called Z2A

This is the statistic (using the terminology for Case 2 in Section 2)

^ 2 2 2
Z2A = n{X i) - X W } /X( ) . This uses the quantity EX U)/n to eliminate

the square of the scale instead of the sample variance. This is a natural

denominator in Case 2 with a = 0, where the model is E(Xi) = em.. (If a is
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not zero, the new variable Xli ) = X(i) - a u uld be used instead of X .

The asymptotic points for Z2A are 0.25 times those for Z2 * An advantage in

using Z2A is that the statistic is much less variable for small n. For Z3 , Table 2

has already been produced in Stephens (1986), although with less accurate

points; there will be negligible difference in practical use.

3.5 Use of the Tables with censored data. Suppose origin and scale are

both unknown (Case 3), and the data is censored at both ends. Thus

n* = r - k + 1 observations are available, consisting of all those between

X W and X (r)  R(X,T) may be calculated, using the usual formula, but

with sums for i from k to r , and with T. = i/(n+l) or T = i , orI 1

even TIT 2 ,... equal to 1,2,...,n , these latter values for T. being possibilities

because R(X,m) is scale and location invariant. Then n*{l - R 2(X,T)}= Z(X,T)

will be referred to Table 3, using the values for sample size n*

3.6 Example. It is well-known that if times Qi 1 i = 1,2,...,n represent

times of random events, occurring in order with the same rate, the Q(U)

should be proportional to uniform order statistics U U )  Thus the Q

may be regressed against i/(n+l) or equivalently against i as

described above, to test that the events are random. Suppose

Q(9)'Q(10)....'Q(20) represent a subset of such times, denoting times of

breakdown of an industrial process. We wish to test that these are uniform;

times Q( 1 ) to Q(8 ) have been cmitted because the process took time to

stabilize and these are not expected to have occurred at the same rate

as the later times. The times Q(9 )'.... 'Q( 2 0 ) are 82, 93, 120, 135, 137,

142, 162, 163, 210, 228, 233, 261. The value of t Z(Q,T) = 12t1 --R2(Q,T)}
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= 0.464 Reference to Table 2 at line n = 12 show that there

is not significant evidence, at the 10% level, to reject the hypothesis

of uniformity.
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4, THE CORRELATION COEFFICIENT: GENERAL CASE,

4.1 The general case. We now discuss, in a non-rigorous fashion, the

distribution of Z(X,m) for the general test of H 0 given in (5). F (x)

o

is assumed to be a continuous distribution, and the sample can be left-

and right-censored. Thus we observe X M < ... < X(r ) from a sample

of size n from the distribution F (x). We can assume the sample comes
0

from F (x) with a = 0 and 1 = , that is, from F() although (3) is0

fitted without this knowledge. Suppose f(x) is the density corresponding

to F(x). Then using Mi = F- ) we have

2 rI X . H. - a - - I)}2

Z(X,m) = n{1 - R (X,m)} k
1 r (H 2
n k i

Define p = (k-l)/n and q = r/n and let q* = F- (q) and p* = F- (p).

Also, let

q q

Y(t) = Q(t) - ( Q(s)ds {F- (t) t F-l(s) - 1 }Q(s)ds,

p p

where

Q(t) =/n N([nt]) - (t)}, and parameters P] and G are given by

q q

P = F(s)ds = ( xf(x)dx

p p

0 and
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q q

f = (F-(s)) 2 ds 2 x2 f(s)dx 2

p p

The process Q(.t) is close to a Gaussian process with mean 0 and

covariance

P(5, t) min (s ,t)
f (F- 1 (s))f(F (t))

The process Y(t) is then close to a Gaussian process with mean 0

and covariance

q q

p(s,t) = P (s,t) - Ns)fP(U)P (u,t)du- l m(t)fr(U)P(su)du

p p

q q q q

f PO(u~t)du - f psud + f f p 0(u,v)dudv
p P p p

q q. qq

+ (S) (t) PO(u,v) (u)f(v)dudv + ( (s) + f(t)) f PO(u,v)i(u)dudv

p p p p

-1F-l(s) - ii

where (s) = (

The denominator of Z = n{l - R 2}, where we write Z for Z(X,m) and R2 for R 2(X,m), i.

then close to 02, and the numerator is close to T = 2(t)dt. Thus the

p

asymptotic theory now depends on the behaviour of T . It appears generally
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that this behaviour is determined by that of qQ2 (t)dt. There are 3 cases

p

in practice, which we label Cases A, B and C. Define

l = 20 (s,t)dsdt

p p

and

q

J2 =  Po ( t ' t ) d t "

p

Case A. In this case suppose J1 < - and J2 <  Then we have

Z = n(l - R) Ai E1 v./
G2 1 1

2

where v. are independent X1  variables and A. are eigenvalues of1 1

1-1
q

f(s) p(s,t)f(t)dt. (The sum EA. will be < co).

p

Case B. Suppose Jl < ' but J2 = . Then there exists a 0 such

2 ) 1 1 -1
that Z - a R n(1 R a 1 E A. (v. 1), where the A. andn n 2 1 i 1

-1
v. are as defined above. (In this case EX. =.)1 1

Case C. For this case suppose both integrals J and J2 are infinite.

Then there exist constants an, b ' such that

Z - a n(l -R) - a
n__ n

b b N(0,1).
n n
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4.3 Examples.

1. The exponential distribution.

For q = 1 we have case C; a = log n , and b = (log n) , so thatn n

n(l - R 2 ) - log n N(0,1).

2V(log n)

For q < 1 we are in Case A and the distribution is a sum of weighted chi-

squared variables.

2. The uniform test (discussed above).

For any p or q Case A applies and (r -- k+l) (1 - R2 ) has the same

limiting distribution regardless of p, q

3. The normal test.

For p = 0 or q = 1 or both we get Case B

For p > 0, q .1 we get Case A.

4. The Logistic test: F(w) = 1/(1 + e - w), < w <

For p = 0 or q = 1 or both we get Case C.

For p > 0 and q < 1, we get Case A. The logistic test is thus

similar to the exponential test.

w-e
5. Test for the Extreme Value distribution .I: F(w) = 1 - e , - O < <

For p = 0, we get Case C.

For p > 0 we get Case A.
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6. Test for the Extreme Value distribution II: F(w) = e , Go W < -

For q = 1, we get Case C.

For q < 1, we get Case A.

4.4 Discussion. The discussion above is somewhat imprecise. When p is

0 or q is 1 there are technical details which have been glossed over.

For the distributions we have studied however the criteria given in Cases

A, B and C lead to the correct answer for asymptotic distributions of

Z(X,m) = ntl - R 2(X,m)}.



Table 1. Critical Points for Z and Z22.

Upper tail significance level (percent)

n 50 25, 15 l0 5 2.5 1

4 0.690 1.240 1.94 3.47 8.67 20.3 47.0

6 0.763 1.323 1.89 2.59 4.74 8.49 17.0

8 0.806 1.364 1.85 2.37 3.78 6.29 11.4

10 0.832 1.388 1.88 2.34 3.40 5.30 8.9

Z2  12 0.848 1.407 1.89 2.33 3.27 4.80 7.8

18 0.877 1.438 1.91 2.32 3.12 4.26 6.3

20 0.881 1.444 1.92 2.32 3.10 4.18 6.0

40 0.907 1.470 1.93 2.32 3.03 3.82 5.1

60 0.916 1.480 1.93 2.32 3.00 3.73 4.9

80 0.920 1.485 1.94 2.32 2.99 3.71 4.9

100 0.922 1.488 1.94 2.32 2.98 3.70 4.8

0.932 1.497 1.94 2.31 2.98 3.67 4.6

4 0.140 0.245 0.333 0.411 0.545 0.707 1.010

6 0.166 0.287 0.379 0.467 0.616 0.796 1.065

8 0.184 0.307 0.403 0.494 0.648 0.830 1.089

10 0.193 0.320 0.420 0.512 0.670 0.848 1.102

Z2 A 12 0.200 0.330 0.432 0.523 0.683 0.861 1.111

18 0.209 0.346 0.452 0.543 0.705 0.882 1.121

20 0.212 0.349 0.455 0.547 0.708 0.886 1.124

40 0.224 0.362 0.472 0.563 0.727 0.903 1.138

60 0.228 0.367 0.477 0.568 0.734 0.909 1.146

80 0.229 0.369 0.479 0.570 0.736 0.911 1.149

100 0.230 0.370 0.480 0.572 0.737 0.912 1.150

0.233 0.374 0.485 0.578 0.744 0.917 1.155
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Table 2. Critical Points for Z
3

n 0.5 0.25 0.15 0.10 0.05 0.025 0.01

4 0.344 0.559 0.734 0.888 1.089 1.238 1.388

6 0.441 0.703 0.901 1.053 1.325 1.590 1.918

8 0.495 0.792 1.000 1.163 1.474 1.739 2.100

10 0.535 0.833 1.068 1.245 1.532 1.846 2.294

12 0.560 0.864 1.093 1.280 1.608 1.918 2.360

18 0.605 0.940 1.147 1.348 1.672 2.008 2.503

20 0.610 0.960 1.200 1.370 1.680 2.025 2.520

40 0.640 0.980 1.215 1.396 1.732 2.076 2.580

60 0.648 0.988 1.227 1.410 1.750 2.092 2.590

80 0.658 0.997 1.228 1.418 1.760 2.104 2.610

0.666 0.992 1.234 1.430 1.774 2.129 2.612
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